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ABSTRACT: Generalized linear and generalized additive habitat models were used to predict
cetacean densities for 10 species in an 818000 km? area off California. The performance of models
built with remotely sensed oceanic data was compared to that of models built with in situ measure-
ments. Cetacean sighting data were collected by the Southwest Fisheries Science Center on 4 sys-
tematic line-transect surveys during the summer and fall of 1991, 1993, 1996, and 2001. Predictor
variables included temporally dynamic, remotely sensed environmental variables (sea surface
temperature and measures of its variance) and more static geographical variables (water depth,
bathymetric slope, and a categorical variable representing oceanic zone). The explanatory and
predictive power of different spatial and temporal resolutions of satellite data were examined and
included in the models for each of the 10 species. Alternative models were built using in situ analogs
for sea surface temperature and its variance. The remotely sensed and in situ models with the high-
est predictive ability were selected based on a pseudo-jackknife cross validation procedure. Environ-
mental predictors included in the final models varied by species, but, for each species, overall
explanatory power was similar between the remotely sensed and in situ models. Cetacean—habitat
models developed using satellite data at 8 d temporal resolution and from 5 to 35 km spatial resolu-
tion were shown to have predictive ability that generally met or exceeded models developed with
analogous in situ data. This suggests that the former could be an effective tool for resource managers
to develop near real-time predictions of cetacean density.
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INTRODUCTION

There has been a recent increase in the development
of cetacean—habitat models (Redfern et al. 2006) to im-
prove the interpretation of abundance trends (Forney
2000), aid in the development of marine protected areas
(Hooker et al. 1999, Canadas et al. 2002), and to increase
the understanding of cetacean-fisheries interactions
(Torres et al. 2003, Kaschner et al. 2006). Many cetacean
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species respond to oceanic variability by moving over
scales of 10s to 100s of kilometers, and cetacean—habitat
models can help distinguish apparent declines in abun-
dance from movement of animals out of an area in
response to changing oceanic conditions (Forney 1999).
Many of the recent quantitative analyses of species—
environment relationships were based on cetacean
sighting and oceanographic data collected simulta-
neously from a ship (e.g. Hedley et al. 1999, Forney 2000,
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Ferguson et al. 2006). Although some relied on satellite
data to investigate cetacean—habitat associations (e.g.
Waring et al. 1993, Jaquet & Whitehead 1996, Moore et
al. 2002), satellite data typically were used to augment in
situ data or when equipment failure precluded the
collection of along-track data (Davis et al. 1998, Baum-
gartner et al. 2001, Davis et al. 2002, Hamazaki 2002).
However, satellite data provide synoptic spatial cover-
age in near real-time, and this can be an important
advantage if remotely sensed data are as effective at
capturing species—environment relationships as in situ
data. To date, there have been no direct comparisons of
cetacean habitat models based solely on in situ and
solely on remotely sensed oceanic variables.

Generalized linear models (GLMs) and generalized
additive models (GAMs) have been used effectively to
model cetacean sighting rates (Hedley et al. 1999, For-
ney 2000) and cetacean density (Ferguson et al. 2006) as
a function of environmental variables. Cetacean densi-
ties are typically estimated by line-transect surveys and
generally result in estimates for large geographic strata
(e.g. the entire United States West Coast). Habitat mod-
eling allows predictions of cetacean densities on a finer
spatial scale than traditional line-transect analyses be-
cause cetacean densities are estimated as a continuous
function of habitat variables (e.g. sea surface tempera-
ture, water depth, etc.). In the present study, we devel-
oped both GAMs and GLMs to relate cetacean sighting
data from shipboard surveys in the California Current
region during summer and fall from 1991 to 2001 to re-
motely sensed environmental data. Separate sets of
GAMs and GLMs were constructed using in situ data
collected during the shipboard surveys or analogous
satellite data. Models were built for 10 species with the
greatest number of sightings: striped dolphin Stenella
coeruleoalba, short-beaked common dolphin Delphinus
delphis, Risso's dolphin Grampus griseus, Pacific white-
sided dolphin Lagenorhynchus obliquidens, northern
right whale dolphin Lissodelphis borealis, Dall's porpoise
Phocoenoides dalli, sperm whale Physeter macroce-
phalus, fin whale Balaenoptera physalus, blue whale
Balaenoptera musculus, and humpback whale Mega-
ptera novaeangliae. Density estimates for each species
were derived from the model predictions.

The objectives of the present study were: (1) to
examine the most effective temporal and spatial reso-
lutions of remotely sensed predictors for species—envi-
ronment models of cetacean density, (2) to compare the
performance of models built using in situ data to those
built using analogous remotely sensed data, and (3) to
compare cetacean densities derived from model pre-
dictions to those estimated using standard line-
transect methods. This study is part of a broader suite
of studies that developed habitat-based predictions of
cetacean density to allow managers and users of the

marine environment (e.g. the United States Navy) to
improve their assessment and mitigation of anthro-
pogenic impacts on these species (Barlow et al. 2009).
If remotely sensed data are shown to be effective pre-
dictors in habitat models, this would allow cetacean
densities to be estimated at finer spatial and temporal
scales than using survey data alone, and near real-time
predictions may be possible. Such findings would
significantly improve the ability of scientists and
resource managers to analyze and make decisions
related to the abundance and distribution of cetacean
populations in the dynamic marine environment.

METHODS

Field methods. Cetacean sighting data used to con-
struct the predictive models were collected off California
during the summer and fall (late July through early
December) of 1991, 1993, 1996, and 2001 (see Barlow &
Forney 2007) using systematic ship-based line-transect
methods (Buckland et al. 2001). The amount of survey
effort varied among years, but transect coverage was
roughly uniform throughout the study area (Fig. 1), and
cetacean data collection procedures were consistent on
all surveys (Kinzey et al. 2000, Barlow & Forney 2007). In
summary, 2 teams of 3 observers rotated at 2 h intervals
among starboard observer, port observer, and data
recorder positions that were located on the flying bridge
of the ship. The starboard and port observers searched
for animals using pedestal-mounted 25 x 150 binoculars,
while the data recorder searched using unaided eye and
7 x50 handheld binoculars. In addition to sighting data,
changes in searching conditions, such as Beaufort sea
state, were entered on a laptop computer connected to
the ship's navigation system. When cetaceans were
detected, the ship typically diverted from the transect
line to estimate group size and identify the species
present to the lowest taxonomic level possible. Group
size was estimated by the observers and was defined to
include all animals at the sighting location that were
behaviorally associated with one another (traveling,
foraging, milling, resting, etc.). We used only sightings
made while on systematic transect lines and identified to
species for building the models.

The in situ sea surface temperature (SST) data used as
potential predictor variables in the comparison models
were collected continuously during the line-transect
surveys using a thermosalinograph with a sensor at 3 m
depth. Details on the collection of in situ oceanic data are
provided by Philbrick et al. (1993, 2003).

Analytical methods. Data analyses: Cetacean density
predictions were derived from encounter rate and group
size models using a 3-step process: (1) model develop-
ment, (2) model selection, and (3) density estimation.
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Model development: GLMs and GAMs are com-
monly used to relate environmental data to character-
istics of a species, such as distribution or abundance
(see Redfern et al. 2006). We developed both GLMs
and GAMs using the same datasets in order to com-
pare model fit and predictive power statistically, and to
gain ecological insight into variables and functional
forms (i.e. the relationship between the response
variable and the predictor variable) included in each
model. Separate GLMs and GAMs were constructed to
explain encounter rate and group size patterns for the
10 cetacean species.

GLMs are mathematical extensions of linear models
that provide a more flexible family of regression mod-
els allowing non-constant variance structures in the
data (McCullagh & Nelder 1989). In a GLM, a function
(the 'link') of the mean (i) of the response variable is
modeled as a weighted sum of predictor variables (xi,
Xy, ..., X,) plus a constant (o):

n
link (u;)= o+ ¥ B;x; (1)
i=1

Each of the predictor variables in GLMs may be
transformed to represent non-linear effects according
to specified parametric functions (e.g. polynomial,
exponential, logarithmic).

GAMs are non-parametric extensions of GLMs, shar-
ing many of the same statistical properties (e.g. additiv-
ity) without constraining the predictor variables to enter
the model as a particular parametric form. As with
GLMs, a GAM is created using a link function defining
the relationship between the mean of the response vari-
able and the functions, f(x), of the predictor variables:

link(u) =0+ f;(x;) 2)

i=1
The components f;(x;) can include non-parametric
smooth functions (splines) of the predictor variables,
allowing GAMs to be much more flexible than GLMs.
Separate encounter rate and group size
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degrees of freedom can add unrealistic
complexity to the functions and tend to
be difficult to interpret ecologically
(Hastie & Tibshirani 1990, Forney 2000,
Ferguson et al. 2006). Akaike's Informa-
tion Criterion (AIC; Akaike 1973) was ini-
tially used in step.gam as the basis for
selecting among potential combinations
of predictor variables and varying de-
grees of freedom. Therefore, all the
potential predictor variables with all com-
binations of functions (e.g. linear, polyno-
mial, exponential, logarithmic for the
GLMs, and linear and spline fits for the
GAMs) each at several orders (0, 1, 2,
and 3) were tested, and the best combi-
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Fig. 1. Completed transects in Beaufort sea states 0 to 5 for the shipboard
line-transect surveys conducted from late July through early December
1991, 1993, 1996, and 2001 off California. One degree of latitude = 111 km
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nation was selected by AIC criteria. Mod-
els were constructed separately for
datasets that excluded 1 of the 4 survey
years; however, the warmest year, 1993,
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was included in all model combinations to capture
the broadest possible range of interannual variability
in oceanic conditions.

In order to create samples for modeling, cetacean
survey data from the 4 shipboard surveys were sepa-
rated into transect segments of approximately 5 km
length, corresponding to the finest resolution of satel-
lite data used for this analysis (5.55 km). The lengths of
continuous sections of survey effort were not, however,
exact multiples of 5 km, and there was generally an
‘extra’ distance of from 0.1 to 4.9 km. If this extra
distance was <2.5 km long, it was included with a
randomly chosen 5 km segment, increasing the length
of that segment. If the extra distance was 22.5 km, a
separate segment of from 2.5 to 4.9 km was created at
a randomly placed cut-point along the effort section. If
the entire continuous effort section was <5 km, it was
treated as a separate segment regardless of length.
The resulting dataset contained a total of 7264 seg-
ments, with the majority (73%) equal to the target
length of 5 km, 23 % of length from 2.5 to 5 km or 5 to
7.5 km, and a small portion (4 %) of <2.5 km long.

Encounter rate models were built with the number of
sightings per segment as the response variable. To
account for the varying length of our segments, seg-
ment length was included as an offset term in the mod-
els to standardize each sample for effort. In order to
maximize sample size for both the remotely sensed and
in situ models, encounter rate models were built with
all the segments available for the respective SST data.
Encounter rates are count data with a large number of
zeroes and are expected to follow an over-dispersed
Poisson distribution. Therefore, quasi-Poisson encoun-
ter rate models were built using a log-link function and
a quasi-likelihood error distribution with the variance
proportional to the mean (McCullagh & Nelder 1989).
Group size models were built using only those seg-
ments that contained sightings. Group size models
were assumed to follow a log-normal distribution (Fer-
guson et al. 2006) and therefore were built using the
natural logarithm of group size as the response vari-
able with an identity link function and a Gaussian
error distribution (McCullagh & Nelder 1989).

Model selection: The initial stepwise model-develop-
ment process that excluded 1 yr at a time yielded
3 potential encounter rate GLMs and GAMs (i.e. a ‘no-
1991 model’, a 'no-1996 model’, and a 'no-2001 model’)
and 3 potential group size GLMs and GAMs for each
species and each of the 2 data types (i.e. satellite and in
situ). The 'best’ encounter rate and group size GLMs
and GAMs were then selected based on a cross valida-
tion process (Hastie & Tibshirani 1990) that we refer to
as a 'pseudo-jackknife,” whereby each model of the
3 selected in the first phase was re-fit to the remaining
combinations of (n — 1)-year datasets and its predictive

ability was assessed by cross validation. The re-fitting
process does not change the variables or associated
functional forms of the models selected during the ini-
tial stepwise procedure, but it forces these models on
each of the remaining (n — 1)-year datasets. The model
with the lowest sum of average squared prediction
error (ASPE; Hastie & Tibshirani 1990) values was
selected as the best overall model (in cases with ties,
the model with the lower ASPE for the novel data was
selected). For the encounter rate models, ASPE calcu-
lations were based on Anscombe residuals to account
for the quasi-likelihood error distribution (McCullagh
& Nelder 1989).

The model selected based on the pseudo-jackknife
process was then re-fit to a smaller dataset for which
both remotely sensed and in situ SST data were avail-
able for all segments, and the multi-year ASPE was
calculated for each encounter rate and group size
model. For each species, the remotely sensed and in
situ GAM or GLM with the lowest ASPE value was car-
ried forward as the final predictive model. If models
had identical ASPEs, but different predictor variables,
then the model with the greatest explained deviance
(McCullagh & Nelder 1989) was selected.

Density estimation: Density (number of animals per
square kilometer) for each species was estimated by
incorporating the final encounter rate and group size
model results into the standard line-transect equation
(Buckland et al. 2001):

n 1

D=(z)‘5‘m @)

where n/L is the predicted encounter rate (number of
sightings per unit length of trackline in kilometers), s is
the predicted group size, ESW is the effective strip
half-width in kilometers, or 1/f(0), where f(0) is the
probability density function evaluated at zero perpen-
dicular distance (i.e. on the trackline), and g(0) is the
probability of detecting a group of animals on the
trackline. A ratio estimator (Finney 1941, Smith 1993)
was used to correct for the bias resulting from back-
transforming the logarithmic values produced by the
group size models.

We relied on published values of f(0) (or ESW) and
g(0) for each species as estimated from the same sur-
vey data (Barlow 2003) for the same range of Beaufort
sea state conditions (0 to 5). The only exception was for
Dall's porpoise, for which the published f(0) and g(0)
were derived for Beaufort sea state conditions of from
0 to 2. Survey effort in these Beaufort conditions was
not distributed uniformly across the study area (see
Fig. 2 in Barlow & Forney 2007), and models built using
only segments with these Beaufort conditions would
not have captured the full range of habitat types for
Dall's porpoise in the study area. Therefore, we ini-
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tially constructed the Dall's porpoise models using the
full range of sea state conditions (0 to 5). To prevent
bias, however, the final density predictions were based
on the average Beaufort sea state for all segments in
sea states of from 0 to 2. For many species, published
f(0) and g(0) values were stratified by group size, and,
therefore, we weighted f(0) and g(0) values based on
the number of small and large groups observed during
the surveys for our density calculations.

Paired encounter rate and group size predictions
from each data source (satellite/in situ) were used
to estimate segment-specific density by species. The
model-based average study-area density (prior to
interpolation) was compared to the density estimate
derived by standard line-transect analyses without
environmental data (hereafter called ‘standard density
estimates'). Segment-specific density estimates from
the models were also interpolated to the entire study
area using Surfer 8.0 (Version 8, Golden Software).
It was necessary to interpolate the segment-specific
density predictions because predictions from the mod-
els built with in situ data were available only for the
surveyed segments; in order to provide a meaningful
comparison, we also interpolated predictions from the
models built with remotely sensed data. Interpolation
grids were created at a resolution of 25 km, using
inverse distance weighting to the second power. This
weighting method gives points closer to each grid node
greater influence than those farther away. All data
within a search radius of 2 degrees latitude (222 km)
were used for interpolation, because transect spacing
ranged from 150 to 230 km during the 4 different sur-
vey years, and contouring results were more robust
when data from >1 transect line were included. Sight-
ings were plotted on the grids to provide a means
for visually evaluating the models' predictive cap-
ability.

Grids were created for each of the individual survey
years, and the individual grid cells were averaged
across all years to calculate mean species density and
its variance. To eliminate occasional over-specification
(‘bull's eye' effects) in the final average prediction grid,
a 5 x 5 pixel moving average filter with equal weights
was applied to the entire grid. The complete gridding
process thus provided smoothed multi-year average
cetacean densities, taking into account both the vary-
ing oceanographic conditions and different levels of
sampling coverage achieved during the SWFSC ceta-
cean surveys. Standard errors were calculated from
the yearly grid cell values using standard formulae.
Because interannual variability is the largest source of
uncertainty in these models, variance in the overall
study-area density was calculated from the yearly pre-
dictions for all 3 estimation methods (line-transect, in
situ models, and remotely sensed models).

Habitat predictor variables: Predictor variables
included SST, the standard deviation (SD) of SST,
oceanic zone, water depth, bathymetric slope, and
Beaufort sea state. We included SD(SST) to serve as a
proxy for frontal regions; dynamic oceanic processes
such as upwelling, fronts, and eddies often result in
surface SST gradients between colder upwelled water
and warmer surface waters. These oceanic processes
can serve to increase biological production and aggre-
gate prey (Mann & Lazier 2006). Chlorophyll could not
be included in the models because remotely sensed
chlorophyll data were not available during the period
from 1991 to 1996. SST and SD(SST) were the only
variables that differed between the remotely sensed
and in situ models. Oceanic zone was included as a
ranked categorical variable defined roughly by water
depth: shelf = waters from the coast to 200 m deep,
slope = waters between 200 and 2000 m deep, and
abyssal plain = waters deeper than 2000 m. Water
depth in each segment was obtained from the ETOPO2
2 min global relief data (US Department of Commerce,
NOAA, NGDC 2006), re-gridded to match the pixel
resolution used for this analysis. Bottom slope was cal-
culated as the magnitude of the bathymetry gradient
using the gradient operator tool in GMT (Generic
Mapping Tools; Wessel & Smith 1998). Individual
depth and bottom slope values estimated at the mid-
point of each segment were retrieved using the 'sam-
ple' tool in ArcGIS (Version 9.2, ESRI). Beaufort sea
state affects the probability of detecting animals (Bar-
low et al. 2001), and an average sea state value within
the segment was included as a continuous predictor
variable in our models in order to account for sighting
conditions. Because the probability of detection de-
creases dramatically in sea states exceeding Beaufort 5
(Barlow et al. 2001), the line-transect sighting parame-
ter estimates derived from these survey data were
based on effort in Beaufort sea states from 0 to 5 (Bar-
low 2003). Therefore, for consistency, segments with
average sea state values exceeding Beaufort 5 (a total
of 83 segments) were eliminated from this analysis.

Remotely sensed environmental data: Mean SST
values (National Oceanic and Atmospheric Adminis-
tration/National Environmental Satellite, Data, and
Information Service/Pathfinder v5) were obtained for
3 temporal resolutions (1, 8, and 30 d composites of
binned, arithmetic means centered on the day of the
survey) at the finest available pixel resolution
(0.05 degrees or approximately 5.55 km) to initially
compare sample size and, data permitting, compare
predictive power. Mean values of SST also were
obtained for 6 spatial resolutions: 1 pixel (30.8 km?), 2 x
2 pixel (123.2 km?), 3 x 3 pixel (277.2 km?), 4 x 4 pixel
(482.8 km?), 5 x 5 pixel (770.1 km?), and 6 x 6 pixel
(1109 km?) regions surrounding the segment midpoint.
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SD(SST) values were calculated for the 5 spatial reso-
lutions that included >1 pixel.

We initially calculated correlation coefficients
between all possible combinations of the 6 spatial reso-
lutions of SST data and found them highly correlated;
the lowest R? value of 0.98 (p < 0.0000) resulted from
a regression of SST values extracted from the finest
(1 pixel) to the coarsest (36 pixel average) resolution
considered in the present analysis. To select which
spatial resolution of SST to include as the best predic-
tor variable, we built separate encounter rate and
group size GAMs and GLMs for each species including
a single SST resolution at a time and holding sample
size constant. We did not include all resolutions in any
single model-building process because regression
models have difficulty distinguishing between highly
correlated variables. Therefore, for the scale analysis,
we restricted the models to 2 variables: 1 resolution of
SST and Beaufort sea state. Models were constructed
separately for datasets that excluded 1 of the 4 survey
years, respectively, and then predictions were made on
the year left out of the model building process to yield
an ASPE. ASPE values were then summed across years
for each of the 6 spatial resolutions. In cases where dif-
ferent spatial resolutions minimized ASPEs for GLMs
and GAMs, we selected the resolution that minimized
the sum of the GLM and GAM ASPE values. The
greatest spatial resolution that yielded an ASPE sum
within 5 % of the best predictive model was selected as
the best predictive model, because larger spatial reso-
lutions resulted in fewer data lost due to cloud cover.
The 5% margin was selected arbitrarily because ASPE
cannot be estimated without error and varies with the
specific samples included in the dataset. We used the
same procedure to select spatial resolutions of SD
(SST).

Following selection of the most appropriate temporal
and spatial resolution of SST data, all encounter rate
and group size models were built with the full suite of
potential predictor variables: SST (at the species-
specific spatial resolution), SD of SST (at the species-
specific spatial resolution), zone, depth, bathymetric
slope, and Beaufort sea state. All of the SST data used
for modeling were matched specifically to the survey
date for each of the 4 years.

In situ environmental data: SST data included in the in
situ analysis were limited to measurements collected
while on the systematic transect lines. We obtained aver-
age SST and SD(SST) estimates from all measurements
within 2.775, 5.550, 8.325, 11.100, 13.875, and 16.650 km
of the segment midpoints to match the spatial resolution
of our satellite data (i.e. 5.55, 11.10, 16.65, 22.20, 27.75,
and 33.30 km). For the models built using in situ data, we
used the species-specific spatial resolutions selected for
the satellite data analysis to ensure that the comparison

was based on the most comparable predictor variables.
Despite our attempt to match spatial resolutions between
the remotely sensed and in situ SD(SST) measures, there
are inherent differences in the dimensions over which
SST variation was calculated: in situ variation was calcu-
lated from along-track SST measures, reflecting a
roughly linear change (1 dimensional variation), while
remotely sensed measures reflect 2 dimensional varia-
tion at the various spatial scales. We also compared
the satellite-derived and in situ measures of SST
and SD(SST) by calculating correlation coefficients for
each pair of values for each of the spatial resolutions.

RESULTS

Barlow & Forney (2007) provide information on the
search effort, number of species sighted, and associated
line-transect abundance estimates for the 1991 to 2001
shipboard surveys. The 10 species we used for model de-
velopment were selected to maximize sample size and
provide a range of known or expected habitat prefer-
ences, group size dynamics, and presence in the study
area (i.e. year-round residents vs. seasonal visitors).
Theyincluded warm-temperate/tropical species (striped
dolphin, short-beaked common dolphin), cold-temperate
species (Pacific white-sided dolphin, northern right
whale dolphin, Dall's porpoise), a cosmopolitan species
(Risso's dolphin), baleen whales present year-round (fin
whale) and only during summer feeding periods (blue
whale, humpback whale), as well a large toothed whale
species known to occur in highly variable group sizes
(sperm whale).

Temporal and spatial resolution of satellite-derived
SST data

The encounter rate and group size models built using
each of the 3 temporal resolutions (1, 8, and 30 d compos-
ites at 5.55 km [30.8 km?] spatial resolution) of satellite-
derived SST data enabled a comparison of sample size
and predictive power. Due to persistent fog off the Cali-
fornia coast, 1 d composites lacked sufficient data to
build robust models (e.g. SST data at this resolution were
available for <15 % of our 2001 dataset). The 30 d SST
composites had good explanatory ability as indicated by
the percent of explained deviance for each of the (n-1)-
year models, which often exceeded that of models built
with 8 d composite SST data. However, predictive ability,
as evaluated by each (n - 1)-year model's predictions for
the year left out of model building, was poor at the 30 d
resolution. A correlation analysis showed high correla-
tion between the 1 and 8 d SST values (R? = 0.96), indi-
cating that the 8 d composites provided adequate cover-
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Table 1. Summary of spatial resolutions of satellite-derived sea surface temperature (SST) and the SD of SST that had the great-

est predictive ability for encounter rate and group size models. Values presented are the number of pixels included in the reso-

lution cell. The spatial resolutions tested included 1, 4, 9, 16, 25, and 36 pixel boxes, corresponding to 5.55-33.3 km boxes
(i-e. 30.8-1108.9 km?)

Species Resolution

— Encounter rate — —— Group size

SST SD(SST) SST SD(SST)
Striped dolphin Stenella coeruleoalba 36 25 36 16
Short-beaked common dolphin Delphinus delphis 36 25 36 25
Risso's dolphin Grampus griseus 9 16 36 16
Pacific white-sided dolphin Lagenorhynchus obliquidens 36 9 36 36
Northern right whale dolphin Lissodelphis borealis 36 36 36 25
Dall's porpoise Phocoenoides dalli 25 36 36 36
Sperm whale Physeter macrocephalus 36 36 36 36
Fin whale Balaenoptera physalus 36 9 36 9
Blue whale Balaenoptera musculus 36 25 36 36
Humpback whale Megaptera novaeangliae 36 36 36 4

age while maintaining fairly consistent representation of
average conditions on the day of the survey. Based on
this evaluation, we selected 8 d running average SST
composites centered on the date of each survey segment.
Of the total 7264 segments in our dataset, >35%
were eliminated due to missing satellite data at the
finest spatial resolution (single pixel) while <17 % were
eliminated at the coarsest spatial resolution (maximum
of 36 pixels). For most species, pre-
dictive ability was higher at coarser
spatial resolutions (Table 1).
SD(SST) values for the 5 potential
spatial resolutions were not as high-
ly correlated as SST values (R? val-
ues ranged from 0.20 to 0.82). For a

Encounter rate and group size models

Models built using remotely sensed or in situ data
generally included the same variables with similar
functional relationships between predictor and re-
sponse variables, particularly for ‘key’ predictor
variables (those having the greatest effect on the mean
response) (Table 4 and Figs. 2 & 3). Variables that had

Table 2. Number of sightings and segments (samples) in Beaufort sea states 0 to 5
from the Southwest Fisheries Science Center's 1991, 1993, 1996, and 2001 surveys
of California waters (survey) and the number of sightings and segments with in situ
and satellite SST data at the finest spatial resolution used in the final encounter rate
and group size models for each species. Shared: the number of sightings for which
both in situ and satellite data were available. Taxonomic names, see Table 1

few of the species suchias fin wha.lle, Species Samples Total number
the 'best’ SD(SST) spatial resolution Survey Insitu Satellite Shared
was much finer than the 'best’ SST
: : Striped dolphin Sightings 61 60 50 49
Sp;Ealf,reS;ﬂ(l;tion (tTE;ble ”'h , Segments 7264 7150 5832 5755
€ linal datasels 1ot €ach SPECIes | qp 1t peaked common dolphin  Sightings 397 394 309 306
consisted of the number of segments Segments 7264 7158 6005 5928
with available SST data for each spe- Risso's dolphin Sightings 80 79 71 70
cies-specific spatial resolution; for all Segments 7264 7166 6132 6054
species combined, approximately Pacific white-sided dolphin Sightings 41 41 25 25
20 % more sightings were available Segments 7264 7134 5583 5500
for bulldlng the in situ models than Northern right whale dolphin Sightings 52 52 40 40
Segments 7264 7166 6132 5928
for models based on remotely sensed . e
Dall's porpoise Sightings 268 268 179 179
SST (Table 2). Remotely sensed and Segments 7264 7158 6005 5928
in situ SST data were highly cor- Sperm whale Sightings 49 49 37 37
related across all spatial scales. In Segments 7264 7166 6132 6054
contrast, correlations between SD Fin whale Sightings 142 134 127 120
(SST) values were weak and in- Segments 7264 7134 5583 5500
creased slightly with increasing spa- Blue whale Sightings 197 192 166 161
. Segments 7264 7166 6132 6054
tial scale (Table 3). Remotely sensed H back whal Siahti 05 05 84 a4
. umpback whale ightings
SST values tended to be slightly Segments 7264 7166 6132 6054
lower than those measured in situ | Toia1 number of sightings 1382 1364 1088 1071
(Table 3).
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Table 3. Correlations (R? values) between satellite and in situ sea surface tem-

DISCUSSION

perature (SST) and SD(SST) at each of the spatial resolutions considered in the

present study. Spatial resolution for the in situ data reflects linear distances that

Spatial resolutions of SST and SD(SST)

match that of the satellite data (e.g. 1 pixel is approximately equal to a 5.55 km
box). SST bias: mean (satellite SST — in situ SST). SD(SST) is not applicable (na)

to the 5.55 km resolution because it includes only 1 pixel

For all species, the encounter rate and
group size models showed similar func-

Spatial resolution No. of Spatial resolution SST SST bias SD(SST) tional relatlonshlp s between SST a?d
(satellite data) pixels (in situ data) (R?) (R?) the response variables across spatial
resolution. However, for the majority of
5.55 km x 5.55 km 1 5.55 km 0.81  -0.023 NA species, the greatest predictive ability
11.10km x 11,10 km 4 11.10 km 082  -0.038 0.01 was observed for the coarsest SST reso-
16.65 km x 16.65 km 9 16.65 km 0.82 -0.041 0.04 luti 36 pixel . telv 1109
22.20 km x 22.20 km 16 22.20 km 0.83 -0.046  0.08 bt (36 pixels or approximately
27.75 km x 27.75km 25 27.75 km 0.83  -0.051 0.11 km?). There is a lack of precision in both
33.30 km x 33.30 km 36 33.30 km 0.83  -0.056 0.14 the sighting and satellite positions that

the greatest effect on encounter rate across species
were SST and depth (Table 4a and Figs. 2 & 3). Beaufort
sea state was also included in the majority of encounter
rate models, confirming this variable's effect on detec-
tion probability. In general, fewer variables were in-
cluded in the group size models (Table 4b).

The percentage of deviance explained by the final
encounter rate models built with remotely sensed data
ranged from 5% (short-beaked common dolphin) to
39% (Dall's porpoise) (Table 5). Corresponding ex-
plained deviance for the final encounter rate models
built with in situ data ranged from 3% (sperm whale)
to 35% (Dall's porpoise). The explained deviance of
group size models built with remotely sensed data
ranged from 3% (Dall's porpoise) to 54 % (Pacific
white-sided dolphin) and from 4 % (fin whale) to 52 %
(Pacific white-sided dolphin) for the group size models
built with in situ data (Table 5). Model performance as
indicated by ASPE differed among species, but neither
model type (remotely sensed/in situ) consistently per-
formed better overall (Table 5).

The overall density of each species within the study
area was estimated using the weighted f(0) and g(0) es-
timates shown in Table 6. For most of the species, par-
ticularly those with the greatest number of sightings,
density estimates were similar for both the satellite and
in situ models (Table 7). However, for 1 species with
<30 sightings (Pacific white-sided dolphin), density es-
timates differed by >30% and the in situ model was
>35 % different than the standard density estimate de-
rived from the survey data (Table 7). For this species,
there were also greater differences in the numbers and
types of predictor variables included in the final en-
counter rate models (Table 4a and Fig. 3). Smoothed
density plots for Pacific white-sided dolphin show obvi-
ous dissimilarities, while those with similar predicted/
standard density ratios (e.g. short-beaked common dol-
phin, Dall's porpoise, humpback whale) are almost in-
distinguishable (Fig. 4).

may be better represented by coarser
spatial resolutions. In addition, there is
a temporal offset between the ship survey and satellite
data acquisition. In the study area, upwelled water is
moved offshore by Ekman transport and south by the
California Current, which has a surface velocity of
approximately 9 cm s™! (Lynn & Simpson 1987). The
spatial displacement of surface water is thus on the
order of 10 km d-!'. A particle of water could travel
40 km over the temporal resolution (8 d composites
centered on the day of the survey) used in the present
study.

Although some cetaceans are known to track fine-
scale features (Etnoyer et al. 2006, Doniol-Valcroze et al.
2007), others appear to respond to broad-scale oceano-
graphic patterns, essentially filtering out finer resolution
‘noise’. The influence of scale on the identification and
interpretation of cetacean—habitat relationships is recog-
nized as an important topic, and has been the focus of
recent research efforts (e.g. Redfern et al. 2008). The
California Current is dominated by smaller, mesoscale
features, but our results suggest it may be worth investi-
gating larger spatial resolutions in future analyses.

The predictive ability of different spatial resolutions of
satellite-derived SD(SST), which we used as a proxy for
frontal regions, was more variable than that of SST. For
many species, the best SD(SST) spatial resolution was
among the finer resolutions considered in the present
study (Table 1), perhaps reflecting the importance of lo-
calized upwelling events or small-scale frontal features.

Predictor variables

The basic functional form of most of the predictor
variables was similar between models built with
remotely sensed and in situ data. This was not surpris-
ing for SST given the correlation between remotely
sensed and in situ values. These results indicate that
remotely sensed measures of SST can be used effec-
tively in place of in situ measures.
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The only variable that exhibited differences between
the models built with remotely sensed and in situ data
was SD(SST). This difference is likely due to the
different dimensions over which SST variation was
calculated: in situ variation was calculated from along-
track SST measures, reflecting a roughly linear change
(1 dimensional variation), while remotely sensed

measures reflect 2 dimensional variation at the various
spatial scales. This difference was most apparent in
the group size models for the fin whale, where the
functional form of SD(SST) at the 16.6 km spatial
resolution differed between in situ and remotely
sensed models. The in situ model showed group size
increasing as SST variation decreases. In contrast, the

Table 4. Comparison of the variables included in the final (a) encounter rate and (b) group size models built with satellite and in
situ data. Final model type (Generalized Additive Model [GAM] or Generalized Linear Model [GLM)]) reflects the model with the
lowest average squared prediction error (ASPE; 'both’ indicates that the GAM and GLM had the same ASPE and included identi-
cal terms). Linear fits are represented by 'L1'. Smoothing splines (GAMSs) are represented by ‘S#', and polynomial fits (GLMs) are
represented by 'P#', where # indicates the associated degrees of freedom. Note that ‘'zone' is a categorical variable (‘C’) that re-
quires 2 degrees of freedom. A ‘-’ indicates that the variable was not included in the model. For those species where the remotely
sensed and in situ models included different predictor variables and/or degrees of freedom, the variable codes (e.g. 'S#', 'P#, etc.)
are shown in bold. Taxonomic names, see Table 1

Species Data source Model ——— Predictor variables
Zone Depth Slope SST SD(SST) Beaufort
(a) Encounter rate models
Striped dolphin Satellite GLM - P2 - P2 P2 L1
In situ Both - L1 - - L1 L1
Short-beaked common dolphin Satellite GAM C2 - - S3 - L1
In situ GAM C2 S2 - S3 - L1
Risso's dolphin Satellite Both - L1 - - - -
In situ Both - L1 - - - -
Pacific white-sided dolphin Satellite GAM C2 S3 - S3 S3 -
In situ GAM Cc2 - - S2 - -
Northern right whale dolphin Satellite GLM C2 - - P3 - P3
In situ GLM Cc2 - - P3 - P3
Dall's porpoise Satellite GLM C2 P2 P3 P3 P2 P3
In situ GLM - P2 - P3 P2 P3
Sperm whale Satellite GLM - P2 - L1 L1 L1
In situ GAM C2 - - - - S3
Fin whale Satellite GLM C2 - - P2 - -
In situ GLM C2 - - P2 - -
Blue whale Satellite GAM - L1 - - - S3
In situ GAM C2 - - - - S3
Humpback whale Satellite GAM C2 L1 - S3 - -
In situ GAM C2 L1 - S3 S3 L1
(b) Group size models
Striped dolphin Satellite Both - - - L1 - -
In situ Both - - - L1 - -
Short-beaked common dolphin Satellite Both - - - L1 - L1
In situ Both - - - L1 - -
Risso's dolphin Satellite Both - - - L1 - -
In situ Both - - - L1 - -
Pacific white-sided dolphin Satellite GAM C2 - - - S2 L1
In situ Both Cc2 - - - L1 L1
Northern right whale dolphin Satellite Both - - - L1 - L1
In situ Both C2 - - L1 - -
Dall's porpoise Satellite Both - - L1 - - L1
In situ GLM - P2 - - L1 L1
Sperm whale Satellite Both C2 - - - - -
In situ Both - L1 - L1 L1 -
Fin whale Satellite GLM - - - - P3 -
In situ GAM C2 - - - S2 -
Blue whale Satellite Both C2 - L1 - - -
In situ GLM - - - P3 - -
Humpback whale Satellite GAM - S3 - - - -
In situ GAM C2 S2 - - - -
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Fig. 2. Encounter rate model functions for: (a) striped dolphin, short-beaked common dolphin, Risso's dolphin, and northern right
whale dolphin and (b) Dall's porpoise, fin whale, blue whale, and humpback whale. Shown are results from models built with
remotely sensed data; for these species, models built with in situ data included the same key variables with similar functional
forms. Models were constructed with both linear terms and either smoothing splines (GAMs) or polynomials (GLMs) having up
to 3 degrees of freedom. Potential predictor variables included sea surface temperature (SST), the standard deviation (SD) of SST,
oceanic zone (Zone), water depth (Depth), bathymetric slope (Slope), and Beaufort sea state (Beaufort). The y-axes represent the
term's (linear, spline, or polynomial) function. Zero on the y-axes corresponds to no effect of the predictor variable on the
estimated response variable (encounter rate). Functions have been scaled relative to the variable having the largest y-axis range
that was not influenced by outliers. The dashed lines reflect 2x standard error bands (i.e. 95% confidence interval). Zone was
modeled as a categorical variable defined roughly by water depth—1: shelf; 2: slope; 3: abyssal plain (see 'Methods—Habitat pre-
dictor variables’ for more details). A grey box indicates the variable was not included in the model. Taxonomic names, see Table 1
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Fig. 2 (continued)

remotely sensed model predicted an almost linear
increase in group size with increasing SST variation,
suggesting that fin whales congregate at localized
frontal regions. This result is consistent with that of
Doniol-Valcroze et al. (2007), who found high
correlations between the distribution of fin whales and
thermal fronts in the Gulf of St. Lawrence. The model
built with remotely sensed data had a lower ASPE
value and a better predicted/standard density ratio
than the model built with in situ data, suggesting that

remotely sensed data may be more effective at
characterizing frontal activity due to their ability to
measure heterogeneity in 2 dimensions.

Model performance
For each of the 10 species considered in this analysis,

we evaluated the performance of 2 models (encounter
rate and group size) built with 2 types of SST data
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Fig. 3. Encounter rate model functions for Pacific white-sided dolphin and sperm whale. For these species, models built with
remotely sensed data differed from those built with in situ data. Models were constructed with both linear terms and either
smoothing splines (GAMs) or polynomials (GLMs) having up to 3 degrees of freedom. Potential predictor variables included
sea surface temperature (SST), the standard deviation (SD) of SST, oceanic zone (Zone), water depth (Depth), bathymetric slope
(Slope), and Beaufort sea state (Beaufort). The y-axes represent the term's (linear, spline, or polynomial) function. Zero on the
y-axes corresponds to no effect of the predictor variable on the estimated response variable (encounter rate). Functions have been
scaled relative to the variable having the largest y-axis range that was not influenced by outliers. The dashed lines reflect
2x standard error bands (i.e. 95% confidence interval). Zone was modeled as a categorical variable defined roughly by water
depth—1: shelf; 2: slope; 3: abyssal plain (see 'Methods—Habitat predictor variables' for more details). A gray box indicates the
variable was not included in the model. Taxonomic names, see Table 1
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Table 5. Proportion of deviance explained (Expl. Dev.) and average squared prediction error (ASPE) for the final encounter rate
(ER) and group size (GS) models. Predictions are based on application of models to the data from which they were built, and thus
provide an indication of explanatory power, i.e. model goodness-of-fit. The ER and GS model with the greatest explanatory
power (as determined by lowest ASPE) for each species appears in bold. The number of samples and number of sightings reflect
the numbers used to build the encounter rate models and depend on the satellite and in situ sea surface temperature data
available for the species-specific spatial resolution. The large range of ASPE values for the group size models in part reflects the
range of species-specific group sizes (e.g. short-beaked common dolphins tend to occur in highly variable groups of up to 1000s
of animals, while blue whales are usually found singly or in small groups). Taxonomic names, see Table 1

Species Number of Number of Data —— ER models — GS models—
samples sightings source Expl. Dev. ASPE Expl. Dev. ASPE
Striped dolphin 5755 49 Satellite 0.111 0.029 0.100 4100
In situ 0.058 0.034 0.108 3700
Short-beaked common dolphin 5928 306 Satellite 0.046 0.185 0.070 52200
In situ 0.049 0.183 0.051 52400
Risso's dolphin 6054 70 Satellite 0.053 0.056 0.071 531
In situ 0.053 0.056 0.050 584
Pacific white-sided dolphin 5500 25 Satellite 0.321 0.117 0.544 4132
In situ 0.227 0.060 0.515 1814
Northern right whale dolphin 5928 40 Satellite 0.182 0.060 0.136 685
In situ 0.174 0.075 0.046 712
Dall's porpoise 5928 179 Satellite 0.393 0.030 0.031 9.32
In situ 0.345 0.185 0.054 8.86
Sperm whale 6054 37 Satellite 0.052 0.070 0.108 59.6
In situ 0.031 0.069 0.250 53.3
Fin whale 5500 120 Satellite 0.101 0.054 0.069 2.15
In situ 0.095 0.064 0.040 2.17
Blue whale 6054 161 Satellite 0.111 0.131 0.079 0.747
In situ 0.114 0.136 0.081 0.678
Humpback whale 6054 84 Satellite 0.342 0.093 0.097 2.975
In situ 0.344 0.099 0.131 2.915

Table 6. Summary of the weighted average effective strip width [ESW = 1/f(0)] and g(0) estimates used to calculate standard and

predicted densities for this analysis. The original values are those estimated from all the survey data (Barlow 2003), which

accounted for both perception and availability bias to the extent possible. These values are weighted by the number of small and

large groups observed during the 1991, 1993, 1996, and 2001 surveys for the segments included in each species-specific spatial
resolution. Taxonomic names, see Table 1

Species Group size ESW g(0)
Original Weighted Original Weighted
average average
Striped dolphin 1-20 0.50 0.927 0.77 0.883
21-100 1.24 1.00
100+ 1.88 1.00
Short-beaked common dolphin 1-20 0.50 1.331 0.77 0.950
21-100 1.24 1.00
100+ 1.88 1.00
Risso's dolphin 1-20 1.37 1.615 0.74 0.819
20+ 2.18 1.00
Pacific white-sided dolphin 1-20 0.50 0.847 0.77 0.862
21-100 1.24 1.00
100+ 1.88 1.00
Northern right whale dolphin 1-20 0.50 0.782 0.77 0.853
21-100 1.24 1.00
100+ 1.88 1.00
Dall's porpoise® All 0.82 0.82 0.79 0.79
Sperm whale All 4.61 4.61 0.87 0.87
Fin whale All 1.72 1.72 0.90 0.90
Blue whale All 1.72 1.72 0.90 0.90
Humpback whale All 2.89 2.89 0.90 0.90
“The original estimates were developed for survey effort in Beaufort sea states 0 to 2 and this was accounted for when
making predictions (see '‘Methods—Analytical methods’ for details)
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Table 7. Standard line-transect (standard) and model-predicted density estimates (animals km™2) and the associated standard
errors (SE; shown in parentheses) based on results from the final remotely sensed (satellite) and in situ models. Predicted densi-
ties are based on application of the encounter rate and group size models to all segments of the datasets prior to interpolation.
Ratios: model predicted/standard density estimates. The model with the ratio closest to 1.000 appears in bold, to illustrate the

model that is most similar to standard line-transect results. Taxonomic names, see Table 1

Species Number of Density estimates Ratios
sightings Standard (SE) Satellite (SE) In situ (SE) Satellite In situ
Striped dolphin 49 0.0499 (0.0160) 0.0501 (0.0067%) 0.0496 (0.0043) 1.004 0.994
Short-beaked common dolphin 306 0.6726 (0.1214) 0.6713 (0.0572) 0.6733 (0.0335) 0.998 1.001
Risso's dolphin 70 0.0172 (0.0034) 0.0231 (0.0010) 0.0219 (0.0007) 1.343 1.273
Pacific white-sided dolphin 25 0.0350 (0.0152) 0.0325 (0.0097%) 0.0226 (0.0022) 0.929 0.646
Northern right whale dolphin 40 0.0246 (0.0065) 0.0248 (0.0028) 0.0248 (0.0029) 1.009 1.008*
Dall's porpoise 179 0.0449 (0.0038) 0.0441 (0.0019) 0.0460 (0.0022) 0.982 1.024
Sperm whale 37 0.0012 (0.0005) 0.0011 (0.0001) 0.0010 (0.0001) 0.917 0.833
Fin whale 120 0.0028 (0.0005) 0.0028 (0.0002) 0.0028 (0.0002) 1.009° 1.018
Blue whale 161 0.0030 (0.0008) 0.0031 (0.0001) 0.0031 (0.0001) 1.017¢ 1.021
Humpback whale 84 0.0018 (0.0003) 0.0019 (0.0002) 0.0019 (0.0001) 1.038* 1.050
“Modeled density estimates were different at 5 significant digits
a) Striped dolphin b) Short-beaked common dolphin
5 RS, Average 1 IS, Average _.'. RS, Average _". . IS, Average
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Fig. 4. Predicted relative density estimates and standard errors from the models built with remotely sensed (RS) and in situ (IS)
data for: (a) striped dolphin, (b) short-beaked common dolphin, (c) Risso's dolphin, (d) Pacific white-sided dolphin, (e) northern
right whale dolphin, (f) Dall's porpoise, (g) sperm whale, (h) fin whale, (i) blue whale, and (j) humpback whale. Predictions are
shown for the study area. Interpolation grids were created at a resolution of 25 km, using inverse distance weighting to the sec-
ond power in Surfer software (Vers 8). The same species-specific relative density scale was used to enable comparisons between
model types (remotely sensed and in situ). Models with obvious outliers were scaled so that differences in predicted densities at
lower levels were visible. White is used to indicate the lowest density ranges; there were almost no ‘zero’ predictions. Black dots
show sighting locations. Taxonomic names, see Table 1
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(remotely sensed and in situ), for a total of 4 models per
species.

Models built with remotely sensed and in situ mea-
sures of SST and its variance exhibited similar
explanatory performance as evident from a compari-
son of explained deviance and ASPE (Table 5). Over-
all, encounter rate models built with remotely sensed
data tended to have lower ASPE values on a species-
by-species basis, while models built with in situ data
tended to have lower ASPE values for the group size
models. There were some differences for some species,
but explanatory power was not consistently higher for
models built with one of the data sources.

In general, we saw relatively good agreement
between the standard density estimates and predicted
values (Table 7). Density predictions for striped dol-
phin, short-beaked common dolphin, northern right
whale dolphin, Dall's porpoise, fin whale, blue whale,
and humpback whale were very close to standard den-
sities estimated directly from the sighting data (the
ratio of predicted/standard values ranged from 0.982
to 1.050). Performance was similar for models built
with remotely sensed versus in situ data (Table 7 and
Fig. 4). For most of these species, at least 80 sightings
were used to build the models. The models built for
Pacific white-sided dolphin (n = 25) exhibited the poor-
est predictive performance; predicted density esti-
mates generated by the in situ model differed by
>35% from the standard density estimates. In sum,
models with predicted/standard density ratios furthest
from 1:1 generally were associated with those species
with the fewest sightings available for model develop-
ment. Although line-transect estimates are not neces-
sarily unbiased, this finding suggests that a minimum
number of sightings is required to produce unbiased
models for each species.

In addition to sample size, the predictive ability of
cetacean—environment models is affected by the level
of complexity of the species’ habitat. More data were
required to parameterize models for species that
inhabit diverse environments. For example, despite
small sample size (n = 49), all the models for striped
dolphin had ratios of predicted to standard density
estimates that approached one (Table 7). Striped dol-
phins are found in tropical and warm-temperate
offshore waters (Perrin et al. 1994), and the key predic-
tor variables included in the models, depth and SST,
captured this pattern adequately with few data. In con-
trast, Pacific white-sided dolphins occur primarily in
shelf and continental slope waters off California that
are oceanographically more complex (e.g. highly vari-
able bathymetry, water temperature, etc.), and more
data were required for model parameterization.

Data loss due to cloud cover is one of the main disad-
vantages associated with using satellite data from

passive infrared sensors such as the advanced very
high resolution radiometer (AVHRR). In the California
study area, persistent cloud cover is often associated
with coastal upwelling areas in summer, indicating
that models built with remotely sensed data are some-
what habitat dependent. Satellite-derived SST data
were available for only 67 % of the database segments
that included sightings of Dall's porpoise (Table 2), a
species known to be associated with coastal, upwelled
water (Forney 2000, present study). In contrast, these
data were available for 78 % of the segments contain-
ing sightings of the short-beaked common dolphin, a
species associated with warmer, offshore water (For-
ney 2000, present study).

The potential reduction in sample size available for
model building can be partially overcome by averag-
ing SST data over larger spatial resolutions, which for
many species yielded greater predictive ability than
smaller spatial scales. SST data obtained from micro-
wave radiometers could help prevent data loss due to
cloud cover and should be evaluated in future studies.
Satellite data may never provide precise measures of
water-column properties or prey indices currently
available from in situ data; however, their repetitive
and 2 dimensional coverage of broad ocean areas on a
near real-time basis can enable timely predictions to
support resource management decisions. In addition,
satellite data allow for spatial predictions to be made
over an entire study area, since, unlike in situ data that
are limited by the areas surveyed, covariate data are
generally available for all grid cells (except where
cloud cover is a problem). The ability to predict den-
sities for entire study areas could significantly improve
our identification and interpretation of interannual
changes in cetacean distribution. Future improve-
ments to cetacean density models may be possible us-
ing new satellite-derived products and environmental
data derived from dynamic physical oceanographic
models. Such variables may lead to advances in near
real-time predictive modeling and provide further
insight into the ecological relationships between
cetaceans and their environment.

Distribution patterns

Evaluation of the final models revealed that the func-
tional forms of key variables were generally consistent
with known distribution patterns for all of the species
except Risso's dolphin. Visual inspection of the pre-
dicted species densities plots and actual sighting loca-
tions confirm that models for 8 of the 10 species
(striped dolphin, short-beaked common dolphin, Paci-
fic white-sided dolphin, northern right whale dolphin,
Dall's porpoise, sperm whale, fin whale, and hump-



180 Mar Ecol Prog Ser 413: 163-183, 2010

back whale) were able to capture spatial distribution
patterns in the study area (Fig. 4). The ability of the
models to identify previously described species— envi-
ronment relationships is briefly summarized for each
species below.

As noted above, striped dolphins are found in warm
waters offshore, and the key predictor variables
included in the models, depth and SST, effectively pre-
dicted greater numbers of encounters and animals in
relatively warm, deep waters.

Encounters with short-beaked common dolphin
were most common in waters with temperatures
216°C, consistent with the warm-temperate/tropical
distribution range for this species (Evans 1994). Previ-
ous studies have suggested that Delphinus spp. con-
centrate along areas of high relief within the Southern
California Bight (Hui 1979). Slope was not included in
any of our final models. Differences between our
results and those of Hui (1979) could be attributed to
the additional variables included in our analysis (i.e.
temperature and zone), which appear to have more of
an effect on abundance of short-beaked common dol-
phins than does slope. In addition, there were differ-
ences in how slope was measured in the 2 studies; Hui
used a categorical index with 5 categories of contour
intervals, whereas we used a continuous variable. The
greatest difference, however, was the extent of the
study areas; our study area was broad, whereas Hui
analyzed data from a localized area in the Southern
California Bight.

Each model for Risso's dolphin contained only 1 lin-
ear predictor (Table 4), suggesting that the environ-
mental variables used in the present study were not
effective at capturing the distribution patterns for this
species. Poor model performance is clearly evident in
the smoothed density plots for this species. The pre-
dicted densities show little correlation with the actual
sightings, on which the models were based (Fig. 4c).
Poor model performance may be attributed in part
to the relatively small sample size (n = 70), or it may
indicate more complex ecological relationships that
were not adequately captured with our set of predictor
variables.

Key variables included in the encounter rate models
for Pacific white-sided dolphin were SST and either
depth or zone, with more encounters predicted for
cooler waters over the continental slope, consistent
with known distribution patterns (Barlow & Forney
2007). SD(SST) was also included in the remotely
sensed encounter rate model and both group size mod-
els for Pacific white-sided dolphin, showing more fre-
quent encounters and larger groups in regions with
greater SST variation (frontal regions). The in situ
model for Pacific white-sided dolphin exhibited poor
performance, as indicated by the predicted/standard

density ratio (0.646; Table 7), particularly when com-
pared to the same ratio for the remotely sensed model
(0.929). The smoothed density plots for these models
were also very different, with the remotely sensed
model appearing to capture the general distribution of
Pacific white-sided dolphin in the study area, while the
in situ model predicted higher densities extending well
offshore in the central portion of the study area where
there were no sightings of this species during any of
the survey years (Fig. 4d). The enhanced performance
of the remotely sensed model is likely due to the inclu-
sion of the depth variable in the encounter rate model,
which shows encounters dropping substantially in
waters deeper than about 3000 m.

The encounter rate models for northern right whale
dolphins showed a ‘threshold effect' for SST, indicating
that encounters dropped substantially in water tem-
peratures greater than about 16°C (Fig. 2a). This result
is consistent with this species’ tendency to occur in rel-
atively colder waters off California (Leatherwood et al.
1982, Jefferson et al. 1994). Northern right whale dol-
phins feed primarily on mesopelagic fish and squid,
and are known to occur frequently with other
cetaceans, particularly Pacific white-sided dolphins
(Jefferson et al. 1994). Interestingly, a less pronounced
but similar threshold effect for SST was also included
in the remotely sensed encounter rate model for Pacific
white-sided dolphin (encounters decreasing rapidly at
water temperatures greater than about 16°C; Fig. 3).

Key predictor variables in the Dall's porpoise
encounter rate models included SST, depth, and Beau-
fort sea state. These terms were similar in functional
form to encounter rate GAMs developed for this spe-
cies by Forney (2000), confirming its preference for
cooler, upwelling-modified water.

All the final models for sperm whale included either
the zone or depth variable. The functional form of the
depth variable in the encounter rate model built with
satellite data shows encounters increasing with
increasing depth up to about 3500 m, and then declin-
ing slightly (Fig. 3). In the in situ model, highest
encounters are shown in waters deeper than 2000 m
(i.e. in Zone 3; Fig. 3). This species’ apparent prefer-
ence for deep waters is consistent with past observa-
tions (Leatherwood et al. 1982). This distribution
pattern also is consistent with survey data collected
monthly in the study area north of Point Conception
during the period from 1980 to 1983: the majority of the
67 sperm whale sightings were in slope waters or
deeper (Dohl et al. 1983). Both the group size models
for this species suggest that larger groups occur in
deeper waters; however, this could be an artifact of the
small number of sightings (n = 2) in waters <2000 m
deep. Sperm whales occur in highly variable group
sizes of 1 (often a solitary male) up to 50 or more
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(Leatherwood et al. 1982). Sample size permitting,
future analyses should examine whether solitary indi-
viduals occupy different habitats than the larger
groups of animals.

The key variables included in the encounter rate
models for fin whales were identical, and their
functional forms very similar. Both models included
zone, indicating most encounters over the continental
slope, and SST, with most encounters in moderate-tem-
perature waters (14 to 19°C, maximal at about 16 to
17°C; Fig. 2b). Aggregations of fin whale have been ob-
served year-round in central/southern California, with
an increase in numbers in summer and fall (Forney &
Barlow 1998). Based on the sighting data, both models
accurately predicted regions with the highest fin whale
densities (Fig. 4h); however, the remotely sensed model
appears to be more effective at capturing overall study
area distribution as indicated by the sighting locations
from 1991 to 2001. This could be due to the difference
in SD(SST) measures discussed previously.

The 2 encounter rate models for blue whale differed
only in their inclusion of the depth variable; the in situ
model included the categorical zone variable, whereas
the remotely sensed model included the continuous
depth variable. The zone variable indicated highest
encounter rates were on the shelf and slope, with
encounter rate dropping significantly in waters deeper
than 2000 m, while depth was included as a linear term
that showed decreasing encounters with increasing
water depth (Fig. 2b). Both models are consistent with
what is known about this species, as blue whales feed
off California in shelf and slope waters during summer
and fall (roughly June through November; Calam-
bokidis et al. 2003), but can also be found in lower
densities in offshore waters (Barlow & Forney 2007).

Despite the overall good model performance indi-
cated by the blue whale predicted/observed density
estimates (1.017 to 1.021), smoothed density plots
suggest that the models were not able to capture the
spatial distribution patterns of blue whales in the study
area (Fig. 4i). The density predictions derived for the
entire study area do not provide information on how
well the models captured spatial patterns. Areas with
the highest predicted densities of blue whales were the
shelf and slope regions along the entire coast. The
failure of the models to predict areas of higher density
further offshore where animals were sighted during the
1991 to 2001 surveys indicates that the environmental
variables considered in the present study did not fully
capture the distribution patterns for this species.

Predictor variables with the largest effect on hump-
back whale encounter rates included SST and depth.
Sighting rates decreased in waters warmer than about
17°C and were higher in shallow than deep waters.
These variables are consistent with the known distrib-

ution patterns of humpback whales off California,
where they congregate to feed during spring, summer,
and fall (Calambokidis et al. 2001).

CONCLUSIONS

The main goals of the present study were to examine
the most effective resolutions of satellite-derived SST
for cetacean-habitat models, to compare the perfor-
mance of models built with remotely sensed versus in
situ data, and to compare cetacean densities derived
from model predictions to those estimated using
standard line-transect methods. For most species, pre-
dictive ability was greater at the coarser SST spatial
resolutions included in our analysis. Although results
varied by species, encounter rate and group size mod-
els built with remotely sensed or in situ SST data
exhibited similar explanatory and predictive perfor-
mance. Low sample size is problematic for both types
of data; however, if sample size is sufficient (ideally
>80 sightings), models built with remotely sensed
measures of SST can perform as well, and in some
cases better, than models built with in situ measures. It
is likely that models built with remotely sensed data
are more appropriate for some species than others,
particularly those species that exhibit a strong associa-
tion to SST (e.g. Dall's porpoise) or SST fronts (e.g.
Pacific white-sided dolphins). However, additional
years of data and tests on novel datasets are needed to
resolve species-specific model performance. We found
that the density values derived from predictive models
built with both remotely sensed and in situ data cap-
tured spatial patterns for most species and were similar
to those estimated using standard line-transect meth-
ods. This finding suggests that habitat modeling using
remotely sensed environmental variables may provide
an alternative method for estimating cetacean densi-
ties in near real-time over broad scales and varying
resolutions.
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